3.7.34 \(\int \frac {x^6}{(1-x^3)^{2/3} (1+x^3)} \, dx\) [634]

Optimal. Leaf size=291 \[ -\frac {1}{2} x \sqrt [3]{1-x^3}+\frac {\tan ^{-1}\left (\frac {1-\frac {2 \sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{2^{2/3} \sqrt {3}}+\frac {\tan ^{-1}\left (\frac {1+\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\log \left (2^{2/3}-\frac {1-x}{\sqrt [3]{1-x^3}}\right )}{6\ 2^{2/3}}-\frac {\log \left (1+\frac {2^{2/3} (1-x)^2}{\left (1-x^3\right )^{2/3}}-\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}\right )}{6\ 2^{2/3}}+\frac {\log \left (1+\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}\right )}{3\ 2^{2/3}}-\frac {\log \left (2 \sqrt [3]{2}+\frac {(1-x)^2}{\left (1-x^3\right )^{2/3}}+\frac {2^{2/3} (1-x)}{\sqrt [3]{1-x^3}}\right )}{12\ 2^{2/3}} \]

[Out]

-1/2*x*(-x^3+1)^(1/3)+1/12*ln(2^(2/3)+(-1+x)/(-x^3+1)^(1/3))*2^(1/3)-1/12*ln(1+2^(2/3)*(1-x)^2/(-x^3+1)^(2/3)-
2^(1/3)*(1-x)/(-x^3+1)^(1/3))*2^(1/3)+1/6*ln(1+2^(1/3)*(1-x)/(-x^3+1)^(1/3))*2^(1/3)-1/24*ln(2*2^(1/3)+(1-x)^2
/(-x^3+1)^(2/3)+2^(2/3)*(1-x)/(-x^3+1)^(1/3))*2^(1/3)+1/6*arctan(1/3*(1-2*2^(1/3)*(1-x)/(-x^3+1)^(1/3))*3^(1/2
))*2^(1/3)*3^(1/2)+1/12*arctan(1/3*(1+2^(1/3)*(1-x)/(-x^3+1)^(1/3))*3^(1/2))*2^(1/3)*3^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 291, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 9, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.409, Rules used = {490, 420, 493, 298, 31, 648, 631, 210, 642} \begin {gather*} \frac {\text {ArcTan}\left (\frac {1-\frac {2 \sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{2^{2/3} \sqrt {3}}+\frac {\text {ArcTan}\left (\frac {\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}+1}{\sqrt {3}}\right )}{2\ 2^{2/3} \sqrt {3}}-\frac {1}{2} \sqrt [3]{1-x^3} x+\frac {\log \left (2^{2/3}-\frac {1-x}{\sqrt [3]{1-x^3}}\right )}{6\ 2^{2/3}}-\frac {\log \left (\frac {2^{2/3} (1-x)^2}{\left (1-x^3\right )^{2/3}}-\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}+1\right )}{6\ 2^{2/3}}+\frac {\log \left (\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}+1\right )}{3\ 2^{2/3}}-\frac {\log \left (\frac {(1-x)^2}{\left (1-x^3\right )^{2/3}}+\frac {2^{2/3} (1-x)}{\sqrt [3]{1-x^3}}+2 \sqrt [3]{2}\right )}{12\ 2^{2/3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^6/((1 - x^3)^(2/3)*(1 + x^3)),x]

[Out]

-1/2*(x*(1 - x^3)^(1/3)) + ArcTan[(1 - (2*2^(1/3)*(1 - x))/(1 - x^3)^(1/3))/Sqrt[3]]/(2^(2/3)*Sqrt[3]) + ArcTa
n[(1 + (2^(1/3)*(1 - x))/(1 - x^3)^(1/3))/Sqrt[3]]/(2*2^(2/3)*Sqrt[3]) + Log[2^(2/3) - (1 - x)/(1 - x^3)^(1/3)
]/(6*2^(2/3)) - Log[1 + (2^(2/3)*(1 - x)^2)/(1 - x^3)^(2/3) - (2^(1/3)*(1 - x))/(1 - x^3)^(1/3)]/(6*2^(2/3)) +
 Log[1 + (2^(1/3)*(1 - x))/(1 - x^3)^(1/3)]/(3*2^(2/3)) - Log[2*2^(1/3) + (1 - x)^2/(1 - x^3)^(2/3) + (2^(2/3)
*(1 - x))/(1 - x^3)^(1/3)]/(12*2^(2/3))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 298

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> Dist[-(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 420

Int[((a_) + (b_.)*(x_)^3)^(1/3)/((c_) + (d_.)*(x_)^3), x_Symbol] :> With[{q = Rt[b/a, 3]}, Dist[9*(a/(c*q)), S
ubst[Int[x/((4 - a*x^3)*(1 + 2*a*x^3)), x], x, (1 + q*x)/(a + b*x^3)^(1/3)], x]] /; FreeQ[{a, b, c, d}, x] &&
NeQ[b*c - a*d, 0] && EqQ[b*c + a*d, 0]

Rule 490

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(2*n -
 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*d*(m + n*(p + q) + 1))), x] - Dist[e^(2*n)
/(b*d*(m + n*(p + q) + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) + (a*d*(m +
 n*(q - 1) + 1) + b*c*(m + n*(p - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d
, 0] && IGtQ[n, 0] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 493

Int[((e_.)*(x_))^(m_.)/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[b/(b*c - a*d), I
nt[(e*x)^m/(a + b*x^n), x], x] - Dist[d/(b*c - a*d), Int[(e*x)^m/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, e,
m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rubi steps

\begin {align*} \int \frac {x^6}{\left (1-x^3\right )^{2/3} \left (1+x^3\right )} \, dx &=\frac {1}{7} x^7 F_1\left (\frac {7}{3};\frac {2}{3},1;\frac {10}{3};x^3,-x^3\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.
time = 10.08, size = 115, normalized size = 0.40 \begin {gather*} \frac {1}{2} x \sqrt [3]{1-x^3} \left (-1-\frac {4 F_1\left (\frac {1}{3};-\frac {1}{3},1;\frac {4}{3};x^3,-x^3\right )}{\left (1+x^3\right ) \left (-4 F_1\left (\frac {1}{3};-\frac {1}{3},1;\frac {4}{3};x^3,-x^3\right )+x^3 \left (3 F_1\left (\frac {4}{3};-\frac {1}{3},2;\frac {7}{3};x^3,-x^3\right )+F_1\left (\frac {4}{3};\frac {2}{3},1;\frac {7}{3};x^3,-x^3\right )\right )\right )}\right ) \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[x^6/((1 - x^3)^(2/3)*(1 + x^3)),x]

[Out]

(x*(1 - x^3)^(1/3)*(-1 - (4*AppellF1[1/3, -1/3, 1, 4/3, x^3, -x^3])/((1 + x^3)*(-4*AppellF1[1/3, -1/3, 1, 4/3,
 x^3, -x^3] + x^3*(3*AppellF1[4/3, -1/3, 2, 7/3, x^3, -x^3] + AppellF1[4/3, 2/3, 1, 7/3, x^3, -x^3])))))/2

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 12.19, size = 694, normalized size = 2.38

method result size
trager \(\text {Expression too large to display}\) \(694\)
risch \(\text {Expression too large to display}\) \(988\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(-x^3+1)^(2/3)/(x^3+1),x,method=_RETURNVERBOSE)

[Out]

-1/2*x*(-x^3+1)^(1/3)+1/4*RootOf(RootOf(_Z^3-2)^2+3*_Z*RootOf(_Z^3-2)+9*_Z^2)*ln(-(12*RootOf(RootOf(_Z^3-2)^2+
3*_Z*RootOf(_Z^3-2)+9*_Z^2)*RootOf(_Z^3-2)^4*x^3+18*RootOf(RootOf(_Z^3-2)^2+3*_Z*RootOf(_Z^3-2)+9*_Z^2)^2*Root
Of(_Z^3-2)^3*x^3+2*RootOf(_Z^3-2)^2*x^6+3*RootOf(RootOf(_Z^3-2)^2+3*_Z*RootOf(_Z^3-2)+9*_Z^2)*RootOf(_Z^3-2)*x
^6-18*(-x^3+1)^(2/3)*RootOf(RootOf(_Z^3-2)^2+3*_Z*RootOf(_Z^3-2)+9*_Z^2)*RootOf(_Z^3-2)^2*x^2+18*(-x^3+1)^(1/3
)*RootOf(RootOf(_Z^3-2)^2+3*_Z*RootOf(_Z^3-2)+9*_Z^2)*x^4-4*x^3*RootOf(_Z^3-2)^2-6*RootOf(RootOf(_Z^3-2)^2+3*_
Z*RootOf(_Z^3-2)+9*_Z^2)*RootOf(_Z^3-2)*x^3-12*x^2*(-x^3+1)^(2/3)-18*(-x^3+1)^(1/3)*RootOf(RootOf(_Z^3-2)^2+3*
_Z*RootOf(_Z^3-2)+9*_Z^2)*x+2*RootOf(_Z^3-2)^2+3*RootOf(RootOf(_Z^3-2)^2+3*_Z*RootOf(_Z^3-2)+9*_Z^2)*RootOf(_Z
^3-2))/(x+1)^2/(x^2-x+1)^2)+1/12*RootOf(_Z^3-2)*ln(-(12*RootOf(RootOf(_Z^3-2)^2+3*_Z*RootOf(_Z^3-2)+9*_Z^2)*Ro
otOf(_Z^3-2)^3*x^3+18*RootOf(RootOf(_Z^3-2)^2+3*_Z*RootOf(_Z^3-2)+9*_Z^2)^2*RootOf(_Z^3-2)^2*x^3-2*x^6*RootOf(
_Z^3-2)-3*RootOf(RootOf(_Z^3-2)^2+3*_Z*RootOf(_Z^3-2)+9*_Z^2)*x^6+18*(-x^3+1)^(2/3)*RootOf(RootOf(_Z^3-2)^2+3*
_Z*RootOf(_Z^3-2)+9*_Z^2)*RootOf(_Z^3-2)*x^2+6*(-x^3+1)^(1/3)*x^4+12*RootOf(_Z^3-2)*x^3+18*RootOf(RootOf(_Z^3-
2)^2+3*_Z*RootOf(_Z^3-2)+9*_Z^2)*x^3-6*x*(-x^3+1)^(1/3)-2*RootOf(_Z^3-2)-3*RootOf(RootOf(_Z^3-2)^2+3*_Z*RootOf
(_Z^3-2)+9*_Z^2))/(x+1)^2/(x^2-x+1)^2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(-x^3+1)^(2/3)/(x^3+1),x, algorithm="maxima")

[Out]

integrate(x^6/((x^3 + 1)*(-x^3 + 1)^(2/3)), x)

________________________________________________________________________________________

Fricas [A]
time = 5.61, size = 356, normalized size = 1.22 \begin {gather*} \frac {1}{36} \cdot 4^{\frac {1}{6}} \sqrt {3} \arctan \left (-\frac {4^{\frac {1}{6}} {\left (6 \cdot 4^{\frac {2}{3}} \sqrt {3} {\left (x^{16} - 33 \, x^{13} + 110 \, x^{10} - 110 \, x^{7} + 33 \, x^{4} - x\right )} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} - 48 \, \sqrt {3} {\left (x^{14} - 2 \, x^{11} - 6 \, x^{8} - 2 \, x^{5} + x^{2}\right )} {\left (-x^{3} + 1\right )}^{\frac {2}{3}} - 4^{\frac {1}{3}} \sqrt {3} {\left (x^{18} + 42 \, x^{15} - 417 \, x^{12} + 812 \, x^{9} - 417 \, x^{6} + 42 \, x^{3} + 1\right )}\right )}}{6 \, {\left (x^{18} - 102 \, x^{15} + 447 \, x^{12} - 628 \, x^{9} + 447 \, x^{6} - 102 \, x^{3} + 1\right )}}\right ) + \frac {1}{72} \cdot 4^{\frac {2}{3}} \log \left (-\frac {12 \, {\left (-x^{3} + 1\right )}^{\frac {2}{3}} x^{2} - 3 \cdot 4^{\frac {2}{3}} {\left (x^{4} - x\right )} {\left (-x^{3} + 1\right )}^{\frac {1}{3}} + 4^{\frac {1}{3}} {\left (x^{6} + 2 \, x^{3} + 1\right )}}{x^{6} + 2 \, x^{3} + 1}\right ) - \frac {1}{144} \cdot 4^{\frac {2}{3}} \log \left (\frac {24 \cdot 4^{\frac {1}{3}} {\left (x^{8} - 4 \, x^{5} + x^{2}\right )} {\left (-x^{3} + 1\right )}^{\frac {2}{3}} + 4^{\frac {2}{3}} {\left (x^{12} - 32 \, x^{9} + 78 \, x^{6} - 32 \, x^{3} + 1\right )} + 12 \, {\left (x^{10} - 11 \, x^{7} + 11 \, x^{4} - x\right )} {\left (-x^{3} + 1\right )}^{\frac {1}{3}}}{x^{12} + 4 \, x^{9} + 6 \, x^{6} + 4 \, x^{3} + 1}\right ) - \frac {1}{2} \, {\left (-x^{3} + 1\right )}^{\frac {1}{3}} x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(-x^3+1)^(2/3)/(x^3+1),x, algorithm="fricas")

[Out]

1/36*4^(1/6)*sqrt(3)*arctan(-1/6*4^(1/6)*(6*4^(2/3)*sqrt(3)*(x^16 - 33*x^13 + 110*x^10 - 110*x^7 + 33*x^4 - x)
*(-x^3 + 1)^(1/3) - 48*sqrt(3)*(x^14 - 2*x^11 - 6*x^8 - 2*x^5 + x^2)*(-x^3 + 1)^(2/3) - 4^(1/3)*sqrt(3)*(x^18
+ 42*x^15 - 417*x^12 + 812*x^9 - 417*x^6 + 42*x^3 + 1))/(x^18 - 102*x^15 + 447*x^12 - 628*x^9 + 447*x^6 - 102*
x^3 + 1)) + 1/72*4^(2/3)*log(-(12*(-x^3 + 1)^(2/3)*x^2 - 3*4^(2/3)*(x^4 - x)*(-x^3 + 1)^(1/3) + 4^(1/3)*(x^6 +
 2*x^3 + 1))/(x^6 + 2*x^3 + 1)) - 1/144*4^(2/3)*log((24*4^(1/3)*(x^8 - 4*x^5 + x^2)*(-x^3 + 1)^(2/3) + 4^(2/3)
*(x^12 - 32*x^9 + 78*x^6 - 32*x^3 + 1) + 12*(x^10 - 11*x^7 + 11*x^4 - x)*(-x^3 + 1)^(1/3))/(x^12 + 4*x^9 + 6*x
^6 + 4*x^3 + 1)) - 1/2*(-x^3 + 1)^(1/3)*x

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{6}}{\left (- \left (x - 1\right ) \left (x^{2} + x + 1\right )\right )^{\frac {2}{3}} \left (x + 1\right ) \left (x^{2} - x + 1\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**6/(-x**3+1)**(2/3)/(x**3+1),x)

[Out]

Integral(x**6/((-(x - 1)*(x**2 + x + 1))**(2/3)*(x + 1)*(x**2 - x + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(-x^3+1)^(2/3)/(x^3+1),x, algorithm="giac")

[Out]

integrate(x^6/((x^3 + 1)*(-x^3 + 1)^(2/3)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^6}{{\left (1-x^3\right )}^{2/3}\,\left (x^3+1\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/((1 - x^3)^(2/3)*(x^3 + 1)),x)

[Out]

int(x^6/((1 - x^3)^(2/3)*(x^3 + 1)), x)

________________________________________________________________________________________